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Natural-convection flow in an enclosure with adiabatic horizontal walls and isother- 
mal vertical walls maintained at a fixed temperature difference has been investigated. 
At high values of the natural-convection parameter, the Rayleigh number, a recircu- 
lating pocket appears near the corners downstream of the vertical walls, and the flow 
separates and reattaches at the horizontal walls in the vicinity of this recirculation. 
There is also a considerable thickening of the horizontal layer. In some previous 
studies by different authors, this corner flow was considered to be caused by an 
internal hydraulic jump, and the jump theory was used to predict bifurcation of the 
steady flow into periodic flow. The present work examines the corner phenomenon 
closely to decide if it is indeed caused by a hydraulic jump. The results of the analysis 
reveal the oversimplification of the problem made in the previous studies: there is 
no connection of the corner phenomenon with a hydraulic jump. The separation 
of flow at the ceiling is not a feature of hydraulic jumps, and the essential energy 
loss associated with hydraulic jumps is not observed in the corner flow. It is shown 
that the corner structure is caused by thermal effects. Owing to the temperature 
undershoots in the vertical boundary layer, which are known to be caused by the 
stable thermal stratification of the core, relatively cold fluid reaches the upper corner. 
This cold fluid detaches from the ceiling like a plume at high Rayleigh numbers, and 
causes the separation and recirculation. 

1. Introduction 
Natural-convection flow inside a square enclosure with differentially heated vertical 

walls and adiabatic horizontal walls is a classical heat-transfer problem. It has a wide 
variety of technical applications, such as in cooling of electronic equipment, climatic 
conditioning of rooms, cooling of nuclear reactors, solar collectors, etc. It is also a test 
case for new computer programs, and has been benchmarked by several authors (de 
Vahl Davis 1983; Le Quirt. 1991). At high values of the natural-convection parameter, 
the Rayleigh number (Ra), the flow structure inside the enclosure shows interesting 
patterns (Chenoweth & Paolucci 1986; Le Quk-6 1987; Paolucci & Chenoweth 1989; 
Henkes 1990): for increasing Rayleigh number, the steady solution bifurcates to an 
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unsteady periodic solution, transforms into a chaotic solution, and finally becomes 
fully turbulent. 

The present work considers the flow structure in the enclosure in the steady flow 
regime, at Rayleigh numbers just below the critical Rayleigh number for bifurcation 
to an unsteady state. At such large Rayleigh numbers, the flow is characterized 
by thin vertical boundary layers adjacent to the vertical walls, a thermally stratified 
core, boundary layers adjacent to the horizontal walls and corner regions. For air, 
the flow in the corner region shows a recirculating pattern and a separation at 
the horizontal walls at high Rayleigh numbers prior to bifurcation. For water, no 
such recirculation or separation is observed. Different existing studies (Le Qukk 
1987; Paolucci & Chenoweth 1989; Henkes & Hoogendoorn 1990) considered that 
the sudden expansion of the flow along the horizontal wall downstream of the 
recirculation region is analogous to an internal hydraulic jump. 

The basic reason for relating the flow structure in the corner region of an enclosure 
to an internal hydraulic jump is rather historical. hey  (1984) suggested that a 
specific oscillatory behaviour that he observed in his experiments during the initial 
transients of the flow of water in a square enclosure, when the temperature difference 
was suddenly imposed on the vertical walls, could have been caused by an internal 
hydraulic jump. His suggestions are worded in a speculative language, and are based 
only on the wave-like appearance of the transient flow structure. Based on the scalings 
of the vertical boundary layers, he derived an expression for the characteristic Froude 
number for this proposed internal hydraulic jump, as a function of the Rayleigh 
and Prandtl numbers. Patterson & Armfield (1990) and Armfield & Patterson (1991) 
strongly refuted the suggestions of hey  (1984) as ‘conjecture’ and showed through 
experimental and computational means that it is not an internal hydraulic jump that 
is responsible for this oscillatory flow, but it is the pressure-wave action caused by 
the splitting of the horizontal intrusions reaching the vertical wall on the opposite 
side of the enclosure. 

Nevertheless, the extension of the scaling arguments of hey  (1984) to the steady- 
state conditions of the flow of air in a square enclosure by Paolucci & Chenoweth 
(1989) predicted the Rayleigh number of bifurcation for air reasonably well. In the 
present work, it is proposed to consider this proposition, and verify its correctness. It is 
intended to carry out an in-depth analysis of the flow near the corner of an enclosure 
at high Rayleigh numbers in the steady flow regime, with a view to examining whether 
the flow structure could indeed be characterized by internal hydraulic jump theory. 

2. Mathematical formulation 

The problem under consideration involves the steady flow of air due to natural 
convection in a square enclosure, caused by differentially heated vertical walls and 
insulated horizontal walls. This geometry is shown in figure 1. The enclosure has 
sides of length H .  The hot vertical wall on the left is kept at a temperature Th and 
the cold vertical wall on the right is kept at a temperature T,. The directions of the 
acceleration due to gravity g and the coordinate axes are also shown in figure 1. 

The flow in the above problem is assumed to be two-dimensional and incompress- 
ible, with density variation only in the body force term, according to the Boussinesq 
approximation. Fluid properties are assumed to be constant. Pressure work and 
viscous dissipation are neglected in the energy equation. The governing equations can 
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FIGURE 1. Geometry of computational domain. 

be written as follows : 
au au  - + - = o o :  
ax ay  

i3T a T  a T  a2T a2T 
- +u- +v- = a 
a t  ax ay 

where u and u are the velocity components in the x- and y-directions respectively, t 
is the time, T is the temperature, p is the density, v and a are the kinematic viscosity 
and the thermal diffusivity of the fluid respectively, g is the acceleration due to gravity 
and p is the coefficient of cubical thermal expansion. The density is assumed to be 
equal to a constant reference density prey in all the terms other than the body force 
term in equation (2.3). p d  is the pressure difference defined as 

P d  (x, Y) = P(x, Y) - Prefg(Y - Yrej)) 

where yref is an arbitrary reference datum. 

geometry in figure 1 can be written as follows: 
The boundary conditions for the above system of equations corresponding to the 

x = 0: u = 0; u = 0; T = T h ,  

x = H :  u = 0; u = 0; T = T,, 
y = o :  u = 0 ;  u = 0; aT/ay = 0, 

y = H :  u = 0 ;  u = 0; aT/ay = 0. 

These governing equations can be non-dimensionalized using the length H of 
the enclosure sides as the reference length, the Brunt-Vaisala velocity scale uB = 

( g p A T H )  f as the reference velocity, Trer = (Th + TJ/2 as the reference temperature 
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(gBATH)f  as the reference velocity, T,., = (Th + T J / 2  as the reference temperature 
and A T  = (Th - T,) as the reference temperature difference. This gives rise to two 
non-dimensional parameters : the Rayleigh number Ra = (gpATH3) / ( va )  and the 
Prandtl number Pr = v / a .  The flow field in the enclosure is entirely a function of 
these two parameters. 

The system of non-dimensionalized equations is integrated over control volumes 
for the respective variables on a staggered grid to arrive at the discretized algebraic 
equations for the variables at their grid points. A fourth-order symmetric central 
difference scheme has been used for the advection terms and a second-order central 
difference scheme has been used for the diffusion terms. The details of the dis- 
cretization procedure are presented by Janssen & Henkes (1993). The solutions are 
marched in time to obtain the steady-state results. Most of the computations for the 
present analysis were performed on an 80x80 non-uniform grid. For higher Rayleigh 
numbers, grid independence of results required a finer grid, and the computations 
were performed on a 120x120 or a 240x240 non-uniform grid. A grid refinement 
from 120x120 to 240x240 grid points for air at Ra = 10' results only in less than 
0.2% change in the characteristic quantities, such as the average wall heat transfer, 
maximum values of the horizontal and vertical velocity components and the gradient 
of the temperature stratification at the centre of the enclosure. 

In all the solutions obtained, the flow exhibits a symmetry about the centre of the 
enclosure. In the forthcoming discussion, we shall concentrate on the flow structure 
at the top left corner. Owing to the symmetry, the description would be valid for the 
bottom right corner also. 

3. Evolution of flow structure 
3.1. EfJect of Rayleigh number 

In order to understand the behaviour of the flow in the corner region at high 
Rayleigh numbers, let us look at how the flow structure of air (Pr = 0.71) evolves 
in an enclosure for increasing Rayleigh number. Figure 2(a-e) shows the streamline 
patterns for air at Rayleigh numbers of lo4, lo5, lo6, lo7 and 10' respectively. At 
a Rayleigh number of lo4 (figure 2a), the flow shows a single clockwise cell in the 
enclosure. As the Rayleigh number is increased to lo5, the streamlines move closer to 
the vertical walls (figure 2b). On further increase in Rayleigh number, the streamlines 
in the core region become more or less horizontal and the streamlines which crowd 
near the vertical walls start forming a boundary layer at these walls (figure 2c). 
Boundary layers are also formed adjacent to the horizontal walls of the enclosure. 
The flow near the corner now starts spreading out into the interior more sharply, 
giving rise to more or less a sudden expansion or a jump-like structure. 

Taking a closer look at the flow near the corner with increasing Rayleigh number, 
one can see that the flow spreads from a thin layer to cover most of the half-width 
of the enclosure, sharply after it negotiates the turn at the corner. As this turn 
becomes sharper, a pocket of fluid forms, getting trapped between the upcoming 
boundary layer on one side and the flow spreading into the interior of the enclosure 
on the other side. This pocket evolves into a recirculation region at Rayleigh numbers 
between lo6 and lo7 (figure 2d,e). As the turn and the expansion sharpen further, the 
flow separates at the horizontal wall, and reattaches itself after the spreading. The 
separation zone is seen to form at around Ra = lo7 (figure 2 4 ,  and is seen clearly at 
Ra = 10' (figure 2e). 
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(a) Ra = lo4 

(c)  Ru = lo6 

( d )  RU = 107 (e) Ra = 10' 

FIGURE 2. Evolution of flow structure with Rayleigh number at P r  = 0.71. 

The occurrence of a recirculating pocket now clearly demarcates the flow in the 
enclosure into two streams: one flowing close to the walls, through the vertical and 
horizontal wall layers, and undergoing the sudden expansion; the other simply going 
around the central region of the enclosure without reaching the walls. Figure 3 shows 
the streamline that demarcates the two streams, at a Rayleigh number of 10' and 
Prandtl number of 0.71. This streamline passes through the nodal point where the 
recirculating loop at the corner region touches the recirculating loop in the central 
region. This special streamline will be referred to as the dividing streamline, in the 
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xlH 
FIGURE 3.  Dividing streamline at Ra = lo8 and Pv = 0.71. 

forthcoming discussion. The dividing streamline thus divides the flow into the wall 
region and the interior region. 

3.2. EfSect of Prandtl number 
To understand the effect of Prandtl number on the flow structure, specifically with 
reference to the corner recirculation and the separation at the horizontal wall, compu- 
tations were performed for a Rayleigh number of los, gradually increasing the Prandtl 
number. For water (Pr = 7.0), the recirculation region in the corner does not appear 
even for Rayleigh numbers as high as 10". The accuracy of this computation was 
verified by grid refinement up to a 320 x 320 non-uniform grid. For Prandtl numbers 
of 4.0 and even 2.0, there were no signs of the recirculation pattern at Ra = lo9. So, 
it was decided to close in on the range of Prandtl numbers between 0.71 and 2.0 in 
order to investigate the effect of Prandtl number on the corner recirculation and the 
separation at the wall. 

Figure 4 shows the evolution of the flow structure with an increase in Prandtl 
number. It can be observed that at a given Ra, while the thickness of the boundary 
layers at the vertical walls remains almost unaltered, the corner recirculation zone and 
the separation zone gradually shrink and disappear as Prandtl number is increased. 
For Ra = lo8, the separation zone ceases to exist when Pr exceeds 1.2, while the 
recirculation region disappears for Pr exceeding 1.4. 

4. Scaling of corner flow 
The high-Rayleigh-number corner flow for air consists of two distinct phenomena: 

the recirculation and the separation at the ceiling. For air, the recirculation commences 
when the Rayleigh number exceeds lo6, and the flow separates at the ceiling for 
Ra > lo7. For water (Pr  = 7.0), the recirculation zone does not appear even at very 
high values of Rayleigh number. The evolution of flow at Ra = lo8 with increasing 
Prandtl number showed that the separation at the wall ceases to exist for Pr > 1.2, 
while the recirculation zone in the corner vanishes for Pr > 1.4. In order to study the 
dependence of these two phenomena on the Rayleigh number and Prandtl number, 
computations were carried out for Pr = 0.85, 1.0, 1.2, 1.4 and 1.6, at various Rayleigh 
numbers in the steady flow regime. The results are used to scale the evolution of the 
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(a)  Pr = 0.85 

(c) Pr = 1.2 

(e) Pr = 1.6 

(b) Pr = 1.0 

( d )  Pr = 1.4 

cf) Pr = 1.8 

FIGURE 4. Evolution of flow structure with Prandtl number at Ra = 10'. 

corner flow phenomena as functions of Rayleigh and Prandtl numbers. A comparison 
of these scalings is made with those based on the theory of the internal hydraulic 
jump, due to Paolucci & Chenoweth (1989). 

4.1. Computed scaling of corner flow 
For this comparison, it is important to accurately identify the point of commencement 
of the recirculation from the computed data. A visual comparison of the streamline 
plots and the stagnant point locations provides an idea of the range of Rayleigh 
numbers at which the recirculation zone commences. Computations are performed 
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(a)  Ra = 2.5 x lo6; Pr = 0.85 (b) Ra = 5 x lo6; Pr = 0.85 

FIGURE 5. Determining commencement of recirculation: contours of u = 0 (-) and u = 0 (- - - -). 

at smaller intervals of Rayleigh number in this probable range in order to pinpoint 
the Rayleigh number of commencement of the recirculation zone, for a given Prandtl 
number. Sample cases are illustrated to describe the methodology adopted to identify 
the points of commencement of the recirculation and separation zones from the 
numerical results. 

Figures 5(a) and 5(b)  show the intersection of the velocity contours u = 0 and 
v = 0 for Pr = 0.85. Figure 5(a) corresponds to Ra = 2.5 x lo6 and figure 5(b) 
corresponds to R a  = 5 x lo6. It can be seen that near the corner, the contours of 
u = 0 and v = 0 do not intersect at Ra = 2.5 x lo6, whereas they do intersect to give 
rise to two stagnant points at Ra = 5 x lo6. In order to narrow down the probable 
range of Ra values within which the commencement point occurs, computations were 
performed for some more values of R a  in the above range. A logarithmic mean of 
the narrowed-down range of Ra values was used as the point of commencement of 
recirculation. The same procedure was followed for all the values of Prandtl number 
investigated. The observed data were fitted by a least-squares fit to a power-law 
relation with Prandtl number, to obtain the following equation: 

R~ - 106.9987p~6.1052 
r -  

The exponent of the Prandtl number in the above relation was rounded off, and 
the constant was redetermined corresponding to the new exponent, in the range of 
Prandtl numbers investigated. This gives 

Ra, = 107Pr6 (4.1) 

for all the Prandtl numbers investigated, in the range of 0.71 to 1.6. 
Flow separation and reattachment points are characterized by zero velocity gradi- 

ents normal to the surface, i.e. zero shear stress at the wall. This character is used to 
locate the separation and reattachment points, and to determine the Rayleigh number 
at which the flow separation commences for a given Prandtl number. Figure 6 shows 
the non-dimensional wall shear stress at the ceiling, for Ra = 107.75 and lo8, at Pr = 

1.2. It is seen that the curve for R a  = 107.75 does not touch the zero line, while the 
curve for Ra = 10' just crosses the zero line, giving rise to two points on the ceiling 
with zero velocity gradient ~ one corresponding to the point of separation and the 
other corresponding to the point of reattachment of the flow. A visual inspection 
of these curves is difficult, but the points of intersection of the curves with the zero 
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FIGURE 6. Determining commencement of separation: wall shear stress at the ceiling ( P r  = 1.2). 

-15 

line, if any, can be computationally determined. From figure 6, we can say that in 
the range of Ra values between 107.75 and los, there exists a value of Ra for which 
the velocity gradient curve just touches the zero line, giving rise to only one point of 
intersection. This value of Ra is the commencement point for separation. The range 
of Ra values of the probable range was narrowed down by making more computa- 
tions, and the logarithmic mean of the narrowed-down range is taken as the point of 
commencement of separation. A least-squares fit was used to determine the power 
dependence of the commencement of separation on Prandtl number. The exponents 
of the Prandtl number obtained from the least-squares fit have been rounded off, and 
the constant of proportionality recomputed. The expressions so obtained are 

Ra, = { 107.27~r2  
1 07.27 Pr7 

for Pr < 1 
for Pr 3 1. 

4.2. Predicted scalings from hydraulic jump theory 
Paolucci & Chenoweth (1989) considered that the flow in the vertical boundary layer 
is turned due to the presence of the horizontal wall, and if the pressure in the corner 
could be assumed constant, then the flow at the mid-height of the enclosure could be 
used to characterize the horizontal flow that undergoes the sudden expansion. From 
the reasoning of Ivey (1984) and the computed results of Chenoweth & Paolucci 
(1986), they derived expressions for the characteristic velocity and depth of flow, just 
upstream of what they claimed to be the hydraulic jump, as follows: 

V 0.1298 for Pr < 1 
for Pr > 1, 

- = {  A 2.145(Pr Ra)-a for Pr < 1 
H 2.145Ra-i for Pr > 1, 

0.1298 Pr-f (4.3) 

(4.4) 

where vB = (gPATH)B,  z? is the mean velocity and A is the momentum thickness 
of the horizontal layer at mid-height of the vertical boundary layer. Equation (4.3) 
was derived by assuming that z? represents the mean vertical velocity in the boundary 
layer at y = H / 2 .  Paolucci & Chenoweth (1989) determined the mean velocity across 
the boundary layer of thickness 6, but they did not give a definition for 6. Equation 
(4.4) was derived by assuming that the momentum thickness of the horizontal layer 
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equals the vertical boundary layer thickness at y = H/2. This momentum thickness 
is defined as 

1 HI2 
A = - L  vdx 

and vmnx is the maximum velocity in the vertical boundary layer. The dependence on 
Rayleigh number and Prandtl number is obtained using the boundary-layer scalings 
for the vertical boundary layer. The proportionality constants have been evaluated 
from the computational results of Chenoweth & Paolucci (1986). Following Ivey 
(1984), Paolucci & Chenoweth (1989) defined a characteristic Froude number F ,  
given by 

Vmax 

where 

which leads to the result 

g' = gBAT/2, 

0.125(Pr Ra)$ for Pr < 1 
0.125Pr-fRa; for Pr > 1. 

F = {  (4.7) 

This gives a unique value of Froude number for a given Rayleigh number, Prandtl 
number and aspect ratio. They used these expressions to compute the Froude 
number, and applied the hydraulic jump theory (Turner 1972) which predicts that for 
1.0 < F < 1.3, the jump dissipates energy in a stationary wavetrain, and remains at 
steady state, while for F > 1.3, the waves break and give rise to unsteady solutions. 
By this argument, they predicted that a hydraulic-jump-like structure must appear 
for Rayleigh numbers such that the corresponding Froude number exceeds unity, 
and the flow bifurcates to unsteadiness when the Froude number exceeds 1.3. These 
predictions can be summarized as 

1.65 x 107Pr-' 
1.65 x 107Pr4 

for Pr < 1 
for Pr >, 1 

Ra > Raj = 

for jumps to occur, and 

1.34 x 108Pr-' 
1.34 x 10sPr4 

for Pr < 1 
for Pr >, 1 

Ra > Rab = (4.9) 

for a bifurcation to occur. For air in a square enclosure ( A  = 1.0; Pr = 0.71), the 
above equations predict Raj = 2.32 x lo7 and Rab = 1.887 x 10'. Henkes (1990) 
observed bifurcation at Ra > 1.7-1.75 x lo8, while Chenoweth & Paolucci (1986) 
observed bifurcation at Ra > 1.93 x 10' in their computed results. 

As discussed earlier, the flow structure in the corner region of the enclosure shows 
two distinct phenomena : a recirculation region and flow separation with reattachment 
at the ceiling. Paolucci & Chenoweth (1989) do not clearly state which of these two 
they call the hydraulic jump. While they concentrated more on discussing the 
bifurcation of steady flow to a periodic flow, they made only a passing mention of 
what they called a hydraulic jump. They stated that the appearance of a hydraulic 
jump in the corner is characterized by steep large-amplitude waves and distinct 
recirculating regions at the horizontal walls. A sudden expansion in horizontal flow, 
which could have been referred to as the 'steep large amplitude waves' by Paolucci 
& Chenoweth (1989), appears at Rayleigh numbers as low as lo5, while distinct 
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_ _  Recirculation (equation (4.1 .)) 

- Separation (equation (4.2)) 
0 Computed points 

x Computed points 
109 Hydraulic jump (equation (4.8)) 

. . . . . . . . Bifurcation (equation (4.9)) . ..... .... 

I I 

Pr 
1 .o 1.3  1.6 

FIGURE 7. Scalings of corner phenomena. 

recirculating regions at the horizontal walls appear only at Rayleigh numbers around 
lo7. Thus, unfortunately, the definition of commencement of a hydraulic jump at 
F = 1.0 lacks precision; equation (4.Q which represents neither the commencement 
of recirculation nor that of separation, thus needs re-examination. 

4.3. Comparison of the scalings 

Figure 7 presents a comparison of the Rayleigh number of commencement of recir- 
culation (Ra,) given by (4.1), with that obtained from our numerical results, and the 
Rayleigh number of commencement of a hydraulic jump (Raj) predicted by (4.8). 
There are two distinct differences between (4.1) and (4.8). Firstly, (4.8) predicts a 
minimum in Raj at Pr = 1.0 whereas (4.1) shows a monotonic increase of Ra, with 
Pr. Secondly, the exponent of Pr in (4.1) is 6, while those in (4.8) are -1 for Pr < 1 
and 4 for Pr 2 1. It can be seen that (4.1) fits all computed points very well. 

Figure 7 also presents the Rayleigh numbers for the commencement of separation 
(Ra,) defined by (4.2), with the computed values from our numerical results, and 
the hydraulic jump theory predictions (4.8). Here again, we observe that the power 
dependence derived from computed results for Ra, is different from that for Raj 
predicted by hydraulic jump theory. 

The prediction of the commencement of hydraulic jump and bifurcation to unsteadi- 
ness, (4.8) and (4.9), are also plotted for reference. This comparison demonstrates 
that the two phenomena observed in the corner region, which were originally inter- 
preted as caused by an internal hydraulic jump, are indeed two distinct phenomena, 
and show different dependences on Rayleigh and Prandtl numbers. The observed 
dependences of these two phenomena are also different from those predicted by the 
theory of internal hydraulic jump. 

It should be mentioned that the correlations presented here are derived from 
computed data over a limited range of Prandtl numbers, and are presented here only 
for the sake of comparison with the numbers predicted by Paolucci & Chenoweth 
(1989). However, the change in slope of the Ra, curve at Pr = 1 shows qualitatively 
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that the asymptotic trends corresponding to Pr << 1 and Pr >> 1 are felt even at 
Prandtl numbers close to unity. 

5. Characterization of corner flow 
In order to verify whether the corner flow is caused by a hydraulic jump, the flow 

in the corner region of the enclosure undergoing a sudden expansion needs to be 
characterized in terms of the governing parameters of a hydraulic jump. Since a 
typical internal hydraulic jump involves a stream undergoing an abrupt change of 
depth, let us identify the commencement of a hydraulic jump, if it exists, with the 
commencement of a change in the depth of the horizontal stream. A separation at 
the horizontal wall cannot be explained by classical theory of hydraulic jumps, and 
thus cannot be called a characteristic feature of the hydraulic jump. 

It was shown that the global characterization of the corner phenomena to define 
a Froude number fails to represent the commencement of the change in depth of 
the stream. Instead of globally characterizing the corner phenomena in terms of the 
Rayleigh and Prandtl numbers, let us look at the horizontal stream which undergoes 
the sudden change of depth, and verify whether it can be characterized as a stream 
undergoing an internal hydraulic jump. In order to do this, we need to define the 
horizontal stream, and define its characteristic Froude number. 

5.1. Dejinition o j  local Froude numbers 
The Froude number of a given stream can be defined as 

where U is the characteristic velocity of the stream, A is its characteristic depth, 
and g' is the effective gravitational acceleration based on the density differences in 
the stream (Turner 1972). In order to compute local Froude numbers, one needs to 
identify the characteristic velocity, density difference and depth, which appear in the 
definition of the Froude number F. Paolucci & Chenoweth (1989) used the values 
that are characteristic of the vertical boundary layer at mid-height of the enclosure. 
We could instead use the horizontal layer itself, and compute the characteristics of 
that layer, from the available numerical results. 

In order to define the horizontal layer, we need to demarcate this layer from the 
rest of the flow. The dividing streamline (figure 3) is the obvious choice, since it clearly 
demarcates the wall layer from the interior flow. The flow between the streamline 
with the stream function y = 0 and the dividing streamline can be used as the wall 
stream. By definition, the enclosure walls have a stream function IJ = 0. When the 
flow separates at the horizontal wall, the horizontal layer is pushed away from the 
wall by the recirculating region at the wall, which is bounded by the streamline IJ = 0. 
It is more appropriate to consider the stream between the above recirculating region 
and the dividing streamline, when a separation occurs. In other words, when the flow 
shows a recirculation region at the corner and also separates at the wall, the stream 
in between the two recirculation regions is defined as the wall layer. 

The wall layer defined above, in the region downstream of the turn at the corner, 
could be called the horizontal layer. For the horizontal layer, we can now define 
the characteristic velocity, depth and density difference. Since classical theory of 
hydraulic jumps is developed for an inviscid stream of uniform velocity and density, 
clearly demarcated from the surrounding fluid of a different density, we need to 
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define an equivalent stream to the horizontal layer, with uniform velocity and density. 
The equivalence can be determined by considering equal mass flow rates in the two 
streams. The alternatives available for the definition of the characteristic velocity are : 

(i) the mean velocity of flow (E)  in the horizontal layer, 
(ii) the maximum velocity of flow (umux) in the horizontal layer and 

(iii) the square root of the mean specific kinetic energy (2’) in the horizontal layer. 
To decide on the most appropriate alternative to use, one must look at the fundamental 
definition of the Froude number. Critical flow ( F  = 1.0) is defined as a flow with 
a velocity equal to that of the infinitesimal long surface wave that can exist in that 
layer. If we consider the mean velocity U to represent the horizontal layer, then the 
thickness of the horizontal layer 6 at the section of interest would be its characteristic 
depth. These quantities can be defined as 

where yd and yo are the y-coordinates of the dividing streamline and the y = 0 
streamline respectively, at the section of interest. 

But there is a difficulty with this definition of characteristic velocity. Since part 
of the horizontal layer has velocities higher than the mean velocity, the flow can be 
locally supercritical even when the mean velocity defines the Froude number as unity 
or marginally less than unity. To overcome this difficulty, the alternative is to use the 
maximum velocity urnax in the cross-section. The corresponding depth of the stream, 
which satisfies conservation of mass in the layer, would then be the momentum 
thickness 6, of the horizontal layer: 

(5.3) 

Following the arguments of Turner (1972), the Froude number could be defined as 
follows : 

1 
F =  

(8’ d / U 2 ) f ’  
with the same notations as in (5.1). In this context, the characteristic velocity in the 
definition of the Froude number is the square root of the mean square velocity or the 
mean specific kinetic energy (2). The corresponding depth is deduced by conservation 
of mass as follows: 

Thus we have three alternative sets of definitions for the velocity scale U and 
length scale A in the definition of Froude number according to (5.1), as given by 
(5.2), (5.3) and (5.4). Paolucci & Chenoweth (1989) used the combination of U and 
a,, characteristic of the vertical boundary layer calculated at the mid-height of the 
enclosure, in their definition of Froude number. 

The value of g’ needs to be defined based on a characteristic density difference 
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between the layer and its ambient medium. This density difference depends directly 
on the characteristic temperature difference. Two of the alternatives available are 

(i) the actual difference in temperature across the layer and 
(ii) the difference between the bulk mean temperature of the layer and the bulk 

mean temperature of the ambient. 
These two characteristic temperature differences and hence the characteristic g’ read 

where 

or 

f Y d  
(5.5) 

J H f 2  AT = ATb= J y d  - 

[ ” u  dy u dy ‘ 1 
Y d  J H f 2  

In contrast to this, Paolucci & Chenoweth (1989) used the temperature difference 
between the hot vertical wall and the centre of the enclosure to define the Froude 
number. 

Combining the various alternatives available for the velocity scale, length scale 
and the density difference, we obtain six alternative definitions of the local Froude 
number, which characterizes the horizontal layer as a stream undergoing an internal 
hydraulic jump in a surrounding medium: 

- 

(5.6) 
U 

F1 = 
(gPAT&)f’ 

(5.7) 

(5.11) 

The above discussion clearly shows the multiplicity of possibilities that exist to 
characterize the sudden expansion of the horizontal layer as a hydraulic jump. To 
illustrate further how arbitrary this characterization is, the six Froude numbers defined 
by (5.6)-(5.11) are plotted along the horizontal layer as a function of the streamwise 
coordinate in figure 8(a),  for air at a Rayleigh number of 10’. The curves show similar 
trends to each other, but the values of the Froude number determined by the various 
definitions are widely different. 

Paolucci & Chenoweth (1989), on the other hand, used the boundary-layer equa- 
tions characterizing the vertical boundary layer at mid-height of the enclosure to 
define the value of the Froude number that characterizes the flow globally. This, 
in fact, adds one more definition to the possible multiplicity of Froude-number 
definitions that can characterize a given flow situation. 
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+ F, (equation (5.6)) 
-9- F2 (equation (5.7)) 
+ F3 (equation (5.8)) 
-8- F4 (equation (5.9)) 
n F, (equation (5.10)) 
+ F6 (equation (5.11)) 1.5 
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FIGURE 8. (a) Various Froude number definitions. (b) Temperature profile in horizontal layer 
(Ra = lo8, P r  = 0.71). 

Hence, a careful characterization of the wall layer undergoing the sudden expansion 
is essential. The six Froude-number definitions given by (5.6)-(5.11) are a first step 
in this direction. We should now choose from these definitions the most suitable one 
for the correct characterization of the sudden expansion in the corner region of an 
enclosure. 
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5.2. Choice of the Froude-number deJinition 

In order to decide on the most suitable definition of Froude number corresponding 
to the problem under consideration, the theoretical analysis of flows with continuous 
density gradients by Long (1953, 1955) will be used. Long (1953) defined the Froude 
number as 

- 

(5.12) 

where Ap is the density difference across the depth H of the layer and Pb is the 
density at the bottom of the layer. Applying this definition to our case, we choose 
u as the characteristic velocity scale and 6 as the depth scale, and the temperature 
difference across the layer (A TT) as the characteristic temperature difference. This 
gives the Froude number F ,  defined in (5.6). 

Long (1955) discussed a difficulty he encountered in defining the value of Ap in 
(5.12). He used a salt solution for his experiments, which had a finite density gradient 
in its interior, and almost zero density gradients near the surface and bottom. Using 
the density difference across the layer to define the Froude number, he found that the 
experimentally observed wave phenomena did not follow his theoretical predictions. 
When he instead used the mean gradient of the density in the interior of the layer, 
assuming that this mean gradient prevailed in the entire depth, in order to compute 
the characteristic density difference, the measured wavelengths agreed closely with 
the theoretically predicted wavelengths for that value of Froude number. 

Figure X(b) presents the temperature profile with the y-coordinate at a section close 
to the minimum cross-section of the horizontal layer, for a Rayleigh number 10’ and 
Prandtl number 0.71. The temperature profile in the horizontal layer just upstream of 
the sudden expansion indeed resembles the density profile described by Long (1955). 
Thus, we choose to use the Froude number F1 defined by (5.6) corrected as suggested 
by Long (1953) to represent the horizontal layer. 

By the theoretical definition of Long (1953), if all streamlines in the stream coincide 
with an isotherm, then the critical Froude number in the case of no slip at the wall 
is determined to be 3, and in the case of uniform velocity, its value is 1,’~. Long 
(1955) states that for his experimental cases, which were not strictly the same as his 
theoretical cases, the behaviour of the flow at the critical Froude number could not 
be verified owing to the uncertainty in the definition of the characteristic density 
difference. Nevertheless, the flow observed by Long (1955) in his experiments was 
quite close to that predicted by his theory. For our case, though the flow conditions 
are strictly not the same as the theoretical conditions of Long (1953, 1955), they are 
similar to his experimental conditions. Hence, by the arguments given above, we can 
expect that the critical Froude number for the present case is less than unity. 

On the other hand, the critical Froude number of 1.0 is valid only for an inviscid 
stream of a homogeneous fluid, with no shear at the wall. As shown by Long (1953), 
for the flow of stratified fluids, the critical Froude number in the presence of wall 
shear is marginally higher than that in the absence of wall shear. Thus, we can expect 
the critical Froude number for our case to be less than unity owing to stratification, 
and its value can be expected to increase marginally owing to the presence of wall 
shear and the non-zero viscosity of the fluid. Since a critical Froude number of 
unity occurs only for homogeneous fluids with no viscosity or wall shear, to expect a 
hydraulic jump at F > 1.0 would be an oversimplification of the problem. 

- 
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FIGURE 9. Local Froude number for different Rayleigh numbers ( P r  = 0.71). 

Figure 9 shows the plot of the streamwise variation of the Froude number F1 
corrected as suggested by Long (1955), in the upper left quarter of the enclosure, for 
Ra = 2.5 x lo6, lo7 and lo8, at Pr = 0.71. It can be seen that there is an abrupt 
change in Froude number in all the curves even when it does not exceed 1.0. This 
shows that the phenomenon causing the sudden expansion in the corner region of an 
enclosure is not a simple internal hydraulic jump. 

6. Verification of jump behaviour 
By the theory of hydraulic jumps, the flow shows no change in depth when it is 

subcritical or critical, but a jump is possible only when it becomes supercritical. It 
does not allow for a gradual change in the depth ratio across the jump. When the 
flow is supercritical, the relation between the upstream depth yl and the downstream 
depth y2 is a unique function of the Froude number, given as follows: 

1 

V l  2 
y2 = - ( (SF '+  1); - 1) for F 2 1. 
< -  

In the case of the flow of air in an enclosure, however, the flow spreads out into 
the core of the enclosure even at Rayleigh numbers as low as lo5, as discussed earlier. 
If the hypothesis that the expansion in flow is due to a hydraulic jump is valid, the 
flow must become supercritical for Rayleigh numbers as low as lo5, well below the 
value of Raj predicted by (4.8). 

The ratio of the downstream depth of the stream to the upstream depth is a 
characteristic feature of hydraulic jumps, which could be used to correlate the present 
problem with hydraulic jumps. Since the expression for conjugate relationship given 
by (6.1) for a simple hydraulic jump is derived from basic equations of conservation 
of mass and momentum, and the computed flow field is also a solution of the 
conservation equations of mass and momentum, a direct comparison of the two 
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Ra F3,max 9 (equation (6.1)) (computations) 

2.5 x lo6 0.951 
107 1.135 

107.25 1.213 
107.875 1.540 

108 1.853 

1.181 
1.287 
1.735 
2.168 

TABLE 1. Depth ratios across a sudden expansion 

2.217 
3.156 
3.586 
4.648 
4.859 

cases is possible. Since the wall layer represents the flow between two streamlines, 
mass conservation is taken care of, while momentum conservation follows from 
the governing Navier-Stokes equations. The basic difference between the present 
case and (6.1) is that (6.1) is derived for an inviscid flow of a homogeneous fluid, 
while the present case is the viscous flow of a fluid with density variation. Table 1 
compares the values of y2/yl predicted by (6.1) for the peak Froude number F3 
(equation (5.8)) in the horizontal layer corresponding to the given Rayleigh number 
with those observed from the flow field. It can be clearly seen that the values of the 
observed ratios are much higher than those predicted. Here, the definition of F3 is 
used for the comparison, because the characteristic Froude number according to this 
definition predicts the highest value of the ratio of depths presented in table 1. The 
other definitions predict even lower values. In particular, the definition F1 corrected 
according to Long (1955) predicts that the Froude number for all the Rayleigh 
numbers considered is less than unity. It is clear from the above comparison that 
the depth ratio in the enclosure flow does not follow the conjugate relation for a 
hydraulic jump, given by (6.1), for any of the definitions of Froude number given by 
(5.6)-(5.11). 

7. Energy considerations 
A hydraulic jump is known to be essentially associated with energy loss. There 

exists no definite expression in the literature for energy losses downstream of a 
hydraulic jump of a fluid with arbitrarily specified density profiles. But it is possible, 
however, to verify whether there is a loss of mechanical energy at the observed sudden 
expansion. A hydraulic jump is always associated with loss of mechanical energy, 
even when the flow is inviscid. If there is no abrupt loss in mechanical energy at 
the sudden expansion, this would be conclusive evidence that the observed sudden 
expansion is not a hydraulic jump. 

In order to examine the flow in the corner region of the enclosure for energy 
losses across the sudden expansion, it is necessary to derive an equation governing 
the transport of mechanical energy in the enclosure. The equation of mechanical 
energy conservation can be deduced from the momentum equations (2.2) and (2.3) 
and written as follows : 
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(7.1) 
Term (I) in (7.1) represents the convective transport of kinetic energy, terms (11) 

and (III) represent the pressure and buoyancy contributions to the potential energy, 
term ( I V )  represents the viscous diffusion of kinetic energy and term ( V )  represents 
the dissipation of the mechanical energy of the flow, constituted by the kinetic and 
potential energy terms given above, due to viscosity. If there are losses associated 
with the sudden expansion in the corner region of the flow, the loss of mechanical 
energy of the flow has the form of energy dissipation due to viscosity. Thus, any 
loss of energy must be reflected in the viscous terms of (7.1). Figure lO(a) shows the 
contours of the viscous terms ( IV  + V )  of (7.1) as calculated for air at Ra = 10'. 
It can be seen that the viscous terms make a significant contribution to (7.1) only 
in the vertical boundary layers. It is more relevant, however, to check the relative 
importance of the viscous terms, as compared to the rest of the terms in the equation, 
in the various regions in the enclosure. The relative magnitude of the viscous terms 
as labelled in (7.1) can be defined as 

(7.2) 
1IV + VI 

)I1 + 1111 + JIIII + IZV + VI' 
Relative magnitude of losses = 

Figure 10(b) shows the relative magnitude of viscous terms in the enclosure at 
Ra = lo8. It is seen that this relative magnitude is significant only in the boundary 
layers close to the vertical walls where the gradients of velocity are large, and at 
the top right and bottom left corners, where the flow velocities are so small that 
the terms (I), (11) and ( I l l )  are also as small as the viscous terms. In that part of 
the top left and bottom right corners, where the sudden expansion is observed, no 
significant losses occur. This implies that this sudden expansion in the flow is not 
associated with mechanical energy loss due to viscosity. This absence of energy loss 
proves conclusively that the sudden expansion observed in the corner region of an 
enclosure is not associated with an internal hydraulic jump phenomenon. 

8. Thermal mechanism of the corner structure 
It was established in the previous sections that the corner flow structure is not 

caused by an internal hydraulic jump: such a jump is a hydrodynamic mechanism. In 
this section, the thermal mechanisms which may cause this structure are examined. 
The temperature field in the boundary layer and corner regions is examined with 
reference to the thermal stratification in the core region to seek an explanation of the 
observed behaviour of the corner flow. 

8.1. Mechanism of separation at the ceiling 
Figure l l(a) shows the isotherms for air at Ra = 10' in the upper left quarter 
of the enclosure. The isotherms indeed reflect the various asymptotic structures : 
a thin vertical boundary layer, horizontal boundary layer, a corner region and a 
core region. The core region is characterized by a stable stratification: i.e. the 
temperature is only a function of y ,  and increases with increase in y. If we examine 
the temperature levels at each y in the boundary layer in comparison with the 
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FIGURE 10. (a) Contours of viscous term. (b) Contours of relative magnitude of viscous terms 
(Ra = lo8, P r  = 0.71). 

corresponding value in the core, we find that the non-dimensional temperature 
does not fall from 8 = 0.5 at the hot wall to the corresponding value in the core 
monotonically. The temperature falls below that of the core (an undershoot), and then 
reaches the core value oscillatorily. Such an oscillatory structure is also found in the 
streamlines, showing reversal of flow in the outer part of the vertical boundary layer 
(figure l l b ) .  Cheesewright (1967), Yang, Novotny & Cheng (1972) and Henkes & 
Hoogendoorn (1989) observed such temperature variations in the similarity solutions 
of the boundary-layer equations for natural convection over a vertical hot plate in 
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FIGURE 11. (a)  Isotherms in upper left quarter of the enclosure: Ra = lo8; P r  = 0.71. (h) 
Streamlines in upper left quarter of the enclosure: Ra = 10'; P r  = 0.71. (c) Isotherms in upper left 
quarter of the enclosure: Ra = 10'; P r  = 70. (d) Streamlines in upper left quarter of the enclosure: 
Ra = 10'; P r  = 70. 

a stably stratified environment. Cheesewright (1967) explains the physical reason for 
the undershoot-overshoot oscillation as 'the rate of heat transfer from the plate to the 
fluid in the outer part of the boundary layer is not sufficient to keep its temperature 
in step with the temperature outside the boundary layer'. The damped oscillation 
structure of isotherms in figure l l(a) is quite similar to that observed in the vertical 
boundary layers investigated in the above references. 

Close to the ceiling, these under- and overshoots in the temperature field are 
affected by the presence of the top wall. This is seen clearly by comparing the shapes 
of the isotherms of 8 = 0.25, 0.3 and 0.35 in figure ll(a). While the 0 = 0.25 isotherm 
freely oscillates to attain its core level, the 0 = 0.35 isotherm is not able to freely 
oscillate above its level in the core. The overshoot in y-coordinate of the isotherms 
above their levels in the core are 0.116H,O.l35H and 0.033H for the 8 = 0.25, 0.3 and 
0.35 isotherms respectively. Since the 8 value of the ceiling at x = H/2 is about 0.36, 
there are no over- or undershoots observed for isotherms corresponding to 0 > 0.36. 
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But the isotherms in the range of 8 = 0.3-0.35 are significantly above their core levels 
as they turn the corner, and hence experience a force of (negative) buoyancy, forcing 
them downwards. This results in the bulk of the horizontal flow in this temperature 
range coming down in the form of a buoyant plume. At high Rayleigh numbers, the 
strength of the downward flow of the plume and its entrainment are so strong that 
the flow separates from the ceiling. This can be seen by comparing the streamlines 
in figure l l ( b )  with the isotherm plot in figure ll(a). The shapes of the isotherms in 
the range 8 = 0.34.35 and the streamlines are quite similar, implying that the effect 
of viscosity and diffusion of heat are negligible in this region. As the flow progesses 
towards the core, the layer 8 = 0.34.35 also becomes thicker from about 0.014H 
near the corner to about 0.115H at x = H / 2 .  The downward plume flow and the 
resulting entrainment causes separation of the flow at the ceiling, and the oscillatory 
attainment of the core temperature allows the reattachment. 

8.2. EfSect of Prandtl number 
Figures 11 (c) and 11 ( d )  present the isotherms and streamlines in the upper left quarter 
of the enclosure for Pr = 70, at Ra = 10'. The temperature levels of the stratified core 
are quite different in this case as compared to those for air, shown in figure l l(a).  The 
isotherms are quite sparsely distributed in the central region of the core ( y  = 0.5H- 
0.75H), while they are quite close together near the horizontal wall. This results in 
quite small over- and undershoots in isotherms at the edge of the boundary layer, 
and hence there is no strong plume. Therefore, there is no separation of flow at the 
ceiling at this Prandtl number. 

8.3. Asymptotic theory and finite-Prand tl-number eflects 
From the above discussion it is clear that the temperature distribution in the core 
region determines whether or not the flow separates in the corner region. But, this 
temperature distribution in the corner region itself is determined by the equilibrium 
between the vertical boundary layer flow and the horizontal core flow. The difficulty 
in the present analysis is that an asymptotic theory to predict the flow structure as 
Ra + 00 at all Prandtl numbers does not exist. Such a theory should describe how 
the flow structures, viz. the vertical boundary layers, core, horizontal boundary layers 
and corners should match. It should also be able to predict whether there exists a 
hierarchical ordering of these different structures. If such a hierarchy indeed exists, 
then we can explain the corner phenomena in terms of cause and effect. 

Gill (1966) assumed that there exists a hierarchy of flow structures at asymptotically 
high Rayleigh numbers at all Prandtl numbers, which comprises only two generic 
regimes: the vertical boundary layer and the core. The horizontal boundary layer 
and the corner region, which result from no-slip conditions at the solid walls, can be 
derived from the asymptotic structures of the core and the vertical boundary layer. 
As Ra + 00, negligible mass flows through the horizontal boundary layer, and the 
vertical boundary layer comes into equilibrium with the core. The role of stratification 
is to tune the horizontal mass flow in the core, which is also the in- and outflow of 
mass to the vertical boundary layers, to their equilibrium levels. 

This theory appears to be valid in both cases discussed in @8.l and 8.2, in the 
respect that the stratification in the core region determines the in- and outflow of mass 
to the vertical boundary layer. Gill (1966) derived the particular case of asymptotic 
solutions for high Prandtl numbers, and predicted the stratification in the core for 
these Prandtl numbers as Ra + co. The approximate solutions of the asymptotic 
system by Gill (1966) predicted a stratification S = [ ( a T / d y ) ( H / A T ) ] ,  at the centre 



Corner flow structure 

w 
0 

1 .o 

Y - 0.5 
H 

0 
~ 

- Pr = 0.71 
- - P r = 4  

Pr = 70 
Pr = 70 

S 0 a 
e(x = Hl2) 

347 

0 

FIGURE 12. (a) Temperature profiles at x = H / 2 .  (b) Isotherm overshoot in the boundary layer. 

of the enclosure to be 0.42, while an accurate solution of the same system by Blythe, 
Daniels & Simkins (1983) predicts its value to be 0.52. The present solution of 
Navier-Stokes equations for Pr = 70 also yields S = 0.52 for Ra = lo8. 

It was shown in $3.2 that the separation at the ceiling vanishes at Pr = 1.4 
for Ra = lo8. This means that the core stratification changes drastically between 
Pr = 0.71 and Pr = 1.4. Figure 12(a) shows the temperature profiles at x = H/2 
for Ra = lo8 at Prandtl numbers 0.71, 4.0 and 70.0. The curves show that the core 
stratification changes very little between Pr = 4 and Pr = 70, and all the change in 
core temperature distribution takes place at Pr < 4.0. The temperature profiles at 
x = H/2 for Pr = 70 matches closely with the asymptotic core temperature profile 
presented by Blythe et al. (1983). Figure 12(b) shows the overshoot distance of the 
isotherms over their position at x = H/2, as a function of their y-coordinate at 
x = H/2, for the above values of Prandtl number. The overshoots measured from 
one of the figures presented in the asymptotic solution of Blythe et al. (1983) are also 
shown in figure 12(b). This figure shows how intimately the isotherm overshoots are 
related to the centreline temperature distribution, and how much the overshoot affects 
the corner flow structure. For Pr > 4.0, the overshoot declines to zero gradually, with 
maxima in the lower half of the hot vertical wall. These overshoot values agree quite 
well with the asymptotic solution of Blythe et al. (1983). At lower Prandtl numbers, 
however, the overshoots are largest close to the ceiling, and the decline to zero is 
abrupt, as the flow encounters the ceiling. The asymptotic structure of the core and 
the vertical boundary layer is no longer similar to that predicted by the asymptotic 
solutions which are valid for large Prandtl numbers. 

Therefore, an asymptotic theory which predicts the core structure at these Prandtl 
numbers as Ra --+ co is essential, based on which we can explain the behaviour of the 
corner flow. Unfortunately, there exists no such asymptotic theory for finite Prandtl 
numbers. Only Graebel (1981) has presented some approximate solutions, in which he 
has neglected some terms in the equations. For air, his prediction is S = 0.49, which is 
considerably lower than the value S = 0.99 predicted by Navier-Stokes computations. 
This strongly suggests that the approximations made by Graebel (1981) impair the 
reliability of the results. Hence, there is a need for an asymptotic theory to predict 
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FIGURE 13. Temperature profiles on the horizontal walls: the top and bottom wall temperatures at 

x = H / 2  are shown on the curves (Ra = lo7, P r  = 0.71). 

the core structure as Ra -+ GO at finite Prandtl numbers, to enable us to predict the 
Prandtl-number dependence of the core flow, and hence the corner structure. 

8.4. Mechanism of recirculation 
The downward plume from the ceiling and the vertical boundary layer both can 
entrain fluid along their edge. When they come close to each other, part of the 
downward plume is re-entrained into the vertical boundary layer and vice-versa, 
resulting in a recirculating pocket of fluid between the two streams. The mechanism 
of this re-entrainment is independent of the mechanism of separation from the ceiling, 
and hence the difference in the dependencies of the two flow structures on Rayleigh 
and Prandtl numbers. 

8.5. Efec t  of horizontal wall temperature on cornerflow 
We now know that the corner flow structure is governed by the temperature distribu- 
tion in the core. This temperature distribution can be locally altered by varying the 
temperature of the horizontal walls. Computations were carried out with different 
thermal boundary conditions, other than adiabatic horizontal walls. Figure 13 shows 
the non-dimensional temperature distribution (6) along the adiabatic horizontal walls 
for Ra = lo7 and Pr = 0.71 (shown by circles). It can be seen that except close 
to the corners, at the top wall 6 is nearly constant at around 0.35, while at the 
bottom wall 6 is around -0.35. Temperature profiles similar in shape to the adia- 
batic wall temperature profile were generated using suitable functions, and used as 
boundary conditions for the computations. These temperature profiles are also shown 
in figure 13. The top and bottom horizontal wall temperatures were maintained at 
(0.5, -0.5), (0.4, -0.4), (0.35, -0.35), (0.25,-0.25), and (0.15, -0.15) respectively for 
the different computations, except near corners. The resulting streamline patterns for 
Ra = lo7 and Pr = 0.71 are presented in figure 14(a-J). 
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FIGURE 14. Effect of boundary conditions on 

(f) (0.15, -0.15) 

flow structures: streamlines for the profiles 
shown in figure 13. 

Figure 14(d) presents the adiabatic wall case, and figure 14(c) presents the case 
corresponding to (0.35,-0.35) boundary conditions. It can be seen that these two 
figures look very much alike, in spite of the minor differences between the shapes of 
their temperature profiles at the horizontal walls. Figures 14(a) and 14(b) present the 
cases of (0.5,-0.5) and (0.4,-0.4) respectively, where the top wall is hotter (and the 
bottom wall is cooler) than the adiabatic case. These figures show that the separation 
zone at the horizontal wall becomes more pronounced when the mean temperature of 
the top wall increases (and that of the bottom wall decreases), while the recirculation 
zone becomes less pronounced. On the other hand, in figures 14(e) and 1 4 0 ,  which 

12 F L M  262 
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show the cases of (0.25, -0.25) and (0.15, -0.15) respectively, we find the reverse: the 
separation at the horizontal wall is less favoured, while the recirculation zone in the 
corner becomes larger, as the mean temperature of the top wall decreases (and that 
of the bottom wall increases). 

9. Conclusions 
The present work closely examined the flow structures observed in the corner region 

of a square enclosure with differentially heated vertical walls and adiabatic horizontal 
walls. The principal aim was to examine whether these flow structures are indeed 
caused by an internal hydraulic jump, as suggested in literature. It was found that 
the corner flow structure has no connections with a hydraulic jump phenomenon. 

(i) The corner flow phenomena are constituted of two distinct features, viz. a 
recirculation and a separation at the horizontal wall. The scalings of these two 
features are different from one another, and from that predicted by the theory of 
internal hydraulic jumps. 

(ii) The theory of the internal hydraulic jump does not explain the separation of 
flow at the ceiling of the enclosure. 

(iii) A multiplicity of possible Froude-number definitions exists, which give rise 
to widely different values of Froude number for the same flow situation. This 
demonstrates the arbitrary nature of Froude-number definition. 

(iv) Since the stream under consideration has continuous density and velocity 
variations across it, the critical Froude number for this flow is not equal to unity. 
The plot of streamwise Froude number indicates the occurrence of a jump at Froude 
number less than unity. Hence, the proposition that a hydraulic jump commences at 
F = 1.0 and breaks up at F = 1.3 appears to be an oversimplification of a complex 
problem. 

(v) According to the theory of hydraulic jumps, a change in depth of the stream 
is possible only when the characteristic Froude number exceeds the critical value. 
Unlike a typical internal hydraulic jump, in which the change in depth commences 
abruptly when the flow becomes supercritical, the spreading of the horizontal layer 
in an enclosure commences as a gradual expansion at low Rayleigh numbers and 
becomes sharper as the Rayleigh number increases. Equation (4.8) based on the 
hydraulic jump theory does not represent the starting point of the expansion of the 
horizontal flow, but the expansion of flow is observed even at Rayleigh numbers 
lower than that predicted by this equation. 

(vi) The depth ratio of the expanding enclosure flow does not agree with the 
relation of conjugate depths, which characterizes a simple hydraulic jump. 

(vii) The equation of conservation of mechanical energy shows that this expansion 
is not associated with any loss of energy. 

(viii) Thus, we conclude that the phenomena observed in the corner region of an 
enclosure at high Rayleigh numbers are not related to an internal hydraulic jump. 
It appears that equation (4.9) due to Paolucci & Chenoweth (1989) predicted the 
bifurcation to unsteady flow for air reasonably well only as a matter of coincidence. 

(ix) It has been qualitatively shown in this paper that the corner structure is 
caused solely by thermal effects. The stable core stratification causes a temperature 
undershoot in the vertical boundary layer. This results in colder fluid than the 
stratified core reaching the ceiling, and the resulting force of buoyancy causes a 
plume. The flow separates from the ceiling when this plume grows strong, with 
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increase in Rayleigh number. Recirculation is caused by re-entrainment of this plume 
into the vertical boundary layer. 

(x) At higher Prandtl numbers, the core temperature distribution does not allow 
large undershoots of temperature, and hence there is no recirculation or separation 
at the corner. 
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